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It was shown theoretically in part 1 (Shercliff 1969) that, when a horizontal 
magnetic field and electric current field are imposed upon a conducting liquid 
with a free surface, waves excited at the surface have an anisotropic dispersion 
relation. Here the possibility of demonstrating this phenomenon in the laboratory 
is considered. The analysis is completed for waves a t  the interface between a 
conducting and non-conducting fluid of similar density, taking full account of 
surface tension, and then viscosity. Surface tension is found to have a consider- 
able influence in reducing the degree of anisotropy to be expected. The problem 
of choosing suitable experimental parameters is discussed, and an apparatus is 
described in which it was possible to demonstrate the existence of anisotropic 
surface waves, and to compare the phase velocity with the theoretical results. 
Also, an experiment is described which verifies the relationship between the 
orientation of the anisotropy and the relative orientation of the imposed magnetic 
and current fields. 

1. Introduction 
Part I (Shercliff 1969) showed theoretically that waves on the surface of a 

conducting liquid, in the presence of a vertical electromagnetic body force due 
to imposed horizontal magnetic and electric current fields, propagate anise- 
tropically. This can be attributed directly to the boundary condition on the 
current density j, which can have no component normal to the fluid surface, at  
the surface. Consequently, the current component normal to wave troughs and 
crests has associated with it a j x B force (B being the constant, uniform, hori- 
zontal magnetic flux density), which must always be normal to the surface, and 
cannot influence wave propagation. The current component parallel to wave 
crests, however, is always horizontal, and its associated j x B force is always 
vertical, acting to help or hinder the gravity force, and consequently affecting 
surface wave propagation. The phase and group velocity of plane surface waves 
are therefore dependent upon the orientation of the wave normal relative to the 
imposed current density vector in the undisturbed state (i.e. the waves propagate 
anisotropically ) . 

In  this paper, the experimental possibilities of this phenomenon are explored, 
and some laboratory experiments are described, the results of which demonstrate 
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the existence of MHD anisotropic surface waves, and substantiate the basic 
theoretical work of Shercliff. One of the motivations behind a laboratory demon- 
stration is the fact that, unlike most other anisotropic wave systems encountered 
in physics, surface waves on a fluid can be easily and directly observed, and could 
possibly be used as an aid to teaching the theory of anisotropic waves. 

In presenting typical plots of the dispersion relation, Shercliff chooses to 
ignore the effect of surface tension and viscosity, in order to simplify the problem. 
He also makes suggestions as to the choice of suitable experimental parameters 
to be used in any laboratory demonstration of the phenomenon, and shows that 
with mercury as a working fluid the surface tension a may be considered to be 
ofnegligible effect for a given set of reasonable parameters. While such an assump- 
tion may be justified in the ordinary hydrodynamic (OHD) case, it  is not neces- 
sarily so for the MHD case, since, with an upward acting j x B force, the tendency 
is to increase the wavenumber k of surface waves of a given frequency, in one 
direction, thus increasing the magnitude ofa12/pg, which determines the infi uence 
of surface tension. Now surface tension has the effect of decreasing the wave- 
number for a given frequency, and consequently counteracts the influence of 
the upward j x B force, thus reducing the degree of anisotropy from that which 
would be expected with zero surface tension. By similar reasoning, the influence 
of viscosity can be negligible for a given frequency of OHD waves, but may be 
significant in the anisotropic MHD case. The need for a complete analysis is 
further reinforced when considering the waves that occur a t  the interface be- 
tween a conducting and non-conducting fluid closely matched in density. Such 
a system, in reducing the effective gravity force on the waves, enables the j x B 
force to compete with it more easily, but at the same time increases the relative 
influence of surface tension and viscosity. 

Hence, while it is instructive to ignore surface tension and viscosity in the 
first instance, to clarify the theoretical analysis, it is necessary to consider their 
influence in detail when designing an experimental demonstration of the waves. 

The only other experimental work in the literature related to this investiga- 
tion is Baker (1965) and Duc (1968), on the MHD Rayleigh-Taylor instability. 
Since the stability equation for the Rayleigh-Taylor instability is essentially 
the same as the dispersion relation for surface waves, the experimental evidence 
of strongly anisotropic instabilities forms a basis for confidence in the theory of 
anisotropy in surface waves. 

2. Theoretical dispersion relation 
We shall make the same basic assumptions as Shercliff. (i) The magnetic field 

associated with the imposed electric current is negligible compared with the 
imposed magnetic field. (It follows that induced e.m.f. due to E = -aB/at 
may be ignored.) (ii) The perturbation of the imposed current by induced e.m.f. 
is negligible. (Thus ohmic damping is ignored.) (iii) Small-amplitude waves will 
be considered (i.e. the perturbation equations of motion are linearizable). 
(iv) The analysis is for plane waves with parallel troughs and crests, although 
any linearizable waves could be Fourier analysed into these. 



Experim.enta1 demonstration of M H D  surface waves 475 

field 

1 2  

c: Current 

1 2  

/ 

Let the upper, non-conducting fluid be denoted by subscript 1 and the lower, 
conducting fluid by 2 .  Consider the co-ordinate system of figure 1, with s a 
horizontal direction parallel to the wave crests, and n normal to them. 

2.1. Inviscid case 

If we consider only the motion in the z , n  plane (i.e. that associated with the 
plane waves), then 

V2$, = 0, 

where q5 is a two-dimensional velocity potential; and, following Shercliff’s 
argument, V x (j x B) has no s component, so that 

The two-dimensional equations of motion for the upper and lower fluids, respec- 
tively, are 

V(Plaq51P+Pl+P194 = 0, (3) 

where j x B in the x ,  n plane is expressed as -j, Bn i + j’ x B,, j’ being the current 
component in the x ,  n plane. (We ignore the j’ x B, term, which is in the s direc- 
tion, and does not contribute to the wave motion.) Now, since j‘ x B, is always 
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normal to the interface zo = (;exp{i(wt-kn)), integrating (3) and (4) along the 
interface, assuming periodic motion, results in 

p1 at +pl +plgzo = 0 a t  z = zo ( 5 )  

(6) 
a O 2  and pzat+p2+ (p2g+j sB , ) z0  = 0 a t  z = z,. 

Now the interfacial condition on pressure is 

and substituting this in ( 5 )  and (6) gives 

The linearized kinematic interfacial condition is 

and the other boundary condition required is that, at  the top and bottom of 
the fluid space, the normal velocity is zero (the upper fluid has a lid), i.e. 

&/az = 0 a t  z = +h,, a$,/& = 0 at z = -h,, (9) 

where h,, h, are the respective depths of the upper and lower fluids. Using (8) 
and (9), (1) and (2) may be solved to yield 

$1 = ( iw /k )  zo(sinh Ez - coth kh1 cosh kz],  

$2 = ( iw/k)  zo{sinh Ez +- coth Eh, cosh kz). 
(10a) 

( l o b )  

For (10) to be compatible with the pressure condition ( 7 ) ,  the constraint required 
is the dispersion relation w = f ( k ) ,  obtained by substituting (10) in (7) ,  and 
making the small-amplitude wave approximation that 

(a#/at),=zo = (afw),=o. 
(PI coth kh1 + P Z  coth kh.2) w2 = k{(p ,  -PI) g +j8Bn + ~lk’} .  Hence 

This is the inviscid dispersion relation for two-fluid interfacial waves, allowing 
for surface tension. 

(11) 

2.2. Viscous case 

Again we consider plane waves, and hence only the motion in the z , n  plane. 
The equations of motion are 

+ v2v2u, -+-Vp,=-  au 1 ( 94- j;:) I j ’ x  Bs 
at Pz P2 

au i 
-+-Vp1 = -gi+v1V2u. (13) 
at P1 

(14) Also, in both fluids v.u = 0. 
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We again split j x B in the z ,  n plane into two parts, 

j’ x Bs-j3Bn,i. 

Following Lamb (1932, art. 349), we let 

u =---- a6 all. t c = - - + + -  86 all. 
an az’ a x  an’ 

Equation (14) is satisfied if v2$h = 0; 

all./at = vv2$, 

and (12) and (13) are satisfied if 
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provided that V x (j x B) has no component in the s direction. Substituting (17)  
in (12 )  and (1  3), and using (16) gives 

and 

j‘ x B, 

Integrating these along the interface z = x,, = cexp ( ikn  + a t )  with j’ x B, always 
normal to the interface gives 

Now we take 
I 

$hl = ( A ,  exp - kx + B, exp kz)  exp ( ikn  + at ) ,  

9, = (Cl exp - m,x + D, exp mlz) exp ( ikn + at ) ,  

$h2 = (A2 exp kz + B, exp - kz) exp ( ikn + a t ) ,  

$2 = (C, exp m2z + D2 exp - m2z) exp ( ikn  + at ) ,  

which satisfy (1 6) and (I 7),  provided 

m2 = k2 + alv. (20) 

For simplicity, we assume infinite height of the top fluid and infinite depth of 
the bottom fluid, so that one boundary condition is for finite motion as z -+ 00. 

Hence, B, = B, = 0, and, provided m has its real part positive, D, = D2 = 0. 
The other boundary conditions are on the normal velocities at the interface, 

i.e. to first order 
uZ1 = uZ2 = acpt at z = 0, (21) 

and the stress conditions a t  the interface 

and 

where P,= -p+2p- % and Pnz=,u 
ax 
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Substituting (1 9 )  in (1 5 )  gives expressions for the velocities in terms of A and C. 
Equation (21) gives z in terms of A and C, and also yields A ,  = - A z ,  Cl = Cz. 
Substituting the expressions for u and < in ( 2 4 )  and using (18) to define p ,  A 
and C can be eliminated to provide the dispersion relation, which is 

( M  + vN) 2k%+ g2 +- 4k4Mv, +02- 4E3(p2mz +,ulml) - = 0, ( 2 5 )  
M 

( P 1 +  P2) 

where P2 + P1 , VAl = - Pz -P1 11.1 = - 
Pz - P1 P2 + P1 

and w is the inviscid frequency for wavenumber k,  i.e. 

3. Theoretical dispersion plots 
3.1. Inviscid 

To obtain meaningful information from the dispersion relation (1 1) above, 
which can assist in the planning of experiments to observe anisotropic waves, 
it is most useful to consider w as given, and for simplicity to take the case of j 
and B imposed mutually a t  right angles so that j, B, is JB cos2 6, 6 being the 
angle between B and n, and J is the imposed current density, positive for 
j, x B, acting downwards and negative when j, x B, acts upwards. Then phase 
and group velocity can be plotted in polar form as functions of 6, for a given w ,  
having eliminated k .  

We shall consider only waves in a deep fluid, such that h, and h, are greater 
than half a wavelength and cothkh = 1 is a reasonable approximation. The 
results for long waves in shallow fluids are similar (Robinson 1973).  Then the 
phase velocity (c  = w / k )  is 

and c is in the n direction. 

and C, = k-1(aw/a6), in the s direction. Hence 
The group velocity has two polar components, C, = (aw/ak), in the n direction, 

J B  sin 26 c, = - 
2 d P l +  Pz)'  

Equations (26) - (28)  must be solved on a computer for a range of 8 and o for 
given physical parameters, since it is not possible to rationalize the equations 
with surface tension into a form dependent only upon one dimensionless para- 
meter, as Shercliff does using y = JB/(pg). Moreover, the form of the dispersion 
relation (11) is such that the polar plot of the group velocity vector is not the 
same shape as a line of constant phase, as it is when surface tension is neglected. 
The line of constant phase is a useful concept for experimental wave observation, 
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FIGURE 2.  Polar dispersion plots: surface waves on mercury. B is parallel to the x: axis. 
Specific gravity 13.6. Surface tension 0.5 N m-l. B = 0.2 Wb m--2, J = 5 x lo5 A m-2. ( a )  
Phase velocity (m s-l). ( b )  Group velocity (m s-l). ( c )  Lines of constant phase. 

Force Down UP Down Up 
. .  

(i) (ii) (iii) (iv) Zero surface tension 
Frequency (rad s-l) 200 33 200 33 (not to scale) 
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FIGURES 3(a, b ) .  For legend see next page. 



Experimental demonstration of M H D  surface waves 481 

FIGURE 3. Polar dispersion plots : interfacial waves between electrolyte and an organic 
solvent mixture. B is parallel to the 2 axis. Specific gravity: upper fluid, 1.080; lower, 
1.101. Interfacial tension 0.04 N m-l. B = 0.2 Wb m--2, J = 10 A m--2. (a) Phase velocity 
(m s-1). ( b )  Group velocity (m s-l). ( c )  Lines of constant phase. 

Force Down UP Down Up 

} (vii) (viii) 

,/--7 7--7 

(i) (ii) (iii) (iv) (v) (vi) Zero surface tension 
Frequency (rads-1) 10 20 3.33 10 20 3.33 (not to scale) 

since it represents the shape of wave crests and troughs which will occur owing to 
a point wave source of constant frequency in a surface of infinite extent, provided 
crests are considered far enough away from the source for the plane wave assump- 
tion to be valid (i.e. the wavelength is small compared with the distance from 
the source). The shape of lines of constant phase can be obtained as the envelope 
of normals to the extremity of the phase velocity vector C, but, to facilitate 
the programming of a computer to plot such lines, use is made of the fact that 
such normals touch the envelope at a point whose direction from the origin is 
that of the group velocity corresponding to c (Shercliff 1970). 

Polar plots of C, C and lines of constant phase are drawn in figures 2-4 for 
values of 0 from 0 to *n. The full 0-+ 277 plots can be obtained by reflexion in 
both axes. The physical parameters indicated in the captions were chosen as 
representative of typical possible experimental conditions, to  be discussed 
in $4. Figure 2 is for waves on the surface of mercury; and figures 3 and 4 
represent waves at the interface of two fluids closely matched in density, with 
and without the addition of a surface-tension reducing agent. Only one value 
of the ratio JB/[(p,-p,)g] is used, the maximum which can practically be 

31 F L M  67 
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0 4 3  

0.0' 
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FIGURE 4. As for figure 3, but at surface tension 0.004 N m-l. 
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obtained, representing the greatest degree of anisotropy which could be obtained. 
Both upward and downward acting j x B forces (i.e. positive and negative J )  
are considered. 

When comparison is made with Shercliff’s theoretical plots, the influence of 
surface tension is apparent. Not only is the anisotropy reduced by surface 
tension, but also it becomes frequency dependent, and the plots tend to circles 
as the frequency increases. Moreover, the difference between the group-velocity 
plot and the lines of constant phase is obvious, the latter being the same cusped 
shape in extreme cases as for zero surface tension, but with the group-velocity 
locus looped instead of cusped. Ideally, a laboratory experiment would aim to 
produce these cusped lines of constant phase, since they present the most 
interesting case to  study; but the inclusion of surface tension in the analysis 
demonstrates that the practical problem is more complex than simply providing 
a large enough j x B force to compete with gravity, as might have appeared a t  
first sight. The influence of surface tension diminishes with decreasing frequency; 
but this involves catering for larger wavelengths, and hence a larger scale of 
experiment, which is much harder to achieve in an MHD situation than the 
OHD case, because of the need to provide a magnetic field and electric current 
supply over a correspondingly larger working volume. It is useful to have an 
indication of the dependence of anisotropy upon frequency; this is shown in 
figure 5, a plot of the anisotropy ratio R ( w )  against frequency, where 

(ceZo is the phase velocity for maximum MHD effect, and cs=g, is the OHD case.) 
Figure 5 is drawn for the two-fluid case of figures 3 and 4, with an additional, 
intermediate surface-tension value. It records that, against expectation created 
by the theory ignoring surface tension, the degree of anisotropy obtainable with 
a downward j x B force is comparable with that for an upward force of the same 
magnitude, since the latter case, having reduced wavelengths, is more influenced 
by surface tension. Thus, because there is no stability limit on the downward 
force, it may be possible to achieve the greatest anisotropy by this means. 
Figure 6 shows frequency against wavenumber for the same parameters. 

3.2. Viscous dispersion relation 

The viscous dispersion relation ( 2 5 ) ,  after substitution for m, and m2, becomes 
a polynomial of order 8 in a, E or c ,  whichever is chosen as the dependent variable. 
As such, it is not strictly a wave equation, but the solutions will approximate 
to waves if the coefficients of even-order terms in a are very much greater than 
odd-order ones. If this is so, we would expect damped oscillations, and an 
estimate of the damping can be obtained if we let ,ul = p2,  whence M = 0, and 
(25) becomes 

IT2 + 0 2  + 2VAI E 2 a  = 0, (29) 

having the solution c = i w -  k2vAf provided w2 k4v&. Now w is the term 
containing the anisotropy ; so, provided this condition holds, the anisotropy is 
the same in the viscous case as the inviscid. But, with an xpward j x B, lc is 

31-2 
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- 
2 4 6 8 10 12 14 16 18 20 

Frequency (rad s-l) 

FIGURE 5 .  Anisotropy ratio against frequency. 

Force UP Down 
r- J------ -7 

01 (N m-I) 0.004 0.010 0.04 0.004 0,010 0.04 
(a)  (6) ( c )  ( d )  (e) (f) 

increased in one direction; so damping is increased, and it is harder to meet the 
condition on w.  It is necessary to consider ( 2 5 )  separately for each set of para- 
meters, to see the effect of viscosity for particular cases. 

4. Choice of experimental parameters 
4.1. The choice of working Jluids 

I n  any MHD experiment, while flexibility is gained from the larger range of 
parameters which influence the process under consideration, the choice of 
working fluids and materials for the containing vessel and ancillary equipment 
is often severely limited by the requirement that  such materials have a suitable 
combination of fluid mechanical and electromagnetic properties. I n  planning 
an experiment to observe MHD anisotropic surface waves, three different sys- 
tems present themselves as possibilities: (i) the use of a sodium-potassium 
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FIGURE 6. Wavelength against frequency. Force: ( a ) ,  ( d )  up, wave normal in B direction; 
( b ) ,  ( e )  none, or wave normal in J direction (OHD wave) ; ( c ) ,  (f) down, wave normal in B 
direction. (a)-(c)  a = 0.004 N m-1; (d)-(f) a = 0.04 N m-l. 

eutectic mixture, of necessity covered by an organic liquid to prevent spon- 
taneous ignition, waves being observed a t  the interface; (ii) surface waves on 
mercury; and (iii) an electrolytic conducting liquid, which can only pass relatively 
low currents compared with the liquid metals, and thus needs to be covered by 
an immiscible liquid of similar density, if MHD forces are to be able to compete 
with gravity forces to influence interfacial waves. 

The experiments to be described used (iii). (i) was eliminated because of the 
complexities of handling liquid sodium in safety. Use of mercury (suggested by 
Shercliff) was tried; but, with a direct current source limited to 1000 A in our 
laboratory circumstances, and a required current density of 5 x lo5 A m-2, 
the maximum surface width was 70mm, insufficient for the propagation of 
surface waves unaffected by reflexions from the wall. Moreover, it would be 
difficult to observe the wave patterns on a large surface area of mercury, by 
reflective methods. 

Having decided on a basic system, the choice of working fluids was still 
difficult, in that both fluids had to satisfy conditions of low viscosity (i.e. of the 
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order of the viscosity of water); be transparent to light to allow visual observation, 
and of significantly different refractive index to reveal interfacial waves by a 
shadow technique ; have as low an interfacial tension as possible; be immiscible 
and insoluble in each other; and be of similar density. The electrolyte had to 
be chosen with as good a conductivity as possible, and minimal polarization and 
generation of by-products a t  the electrodes. Both liquids needed to be safe to 
handle, as regards both toxicity and flammability, readily available and rela- 
tively cheap. 

The obvious choice of electrolyte was copper sulphate solution in conjunction 
with copper electrodes. Although not as good a conductor as HCI, it is less 
corrosive, presents less electrode problems, and a solution with specific gravity 
of 1.10 was found to be capable of carrying a current density of 1000 A m-2 
under an electric field of about 300 V m-l. A suitable upper, non-conducting 
fluid was harder to find; but finally a mixture of white spirit (turpentine sub- 
stitute) with X.G. of 0.85 and Genklene (1 ,l,l-trichloroethane) with X.G. 1-32 
was used. By mixing these in suitable proportions, the specific gravity could 
be varied to match that of the electrolyte. The interfacial tension between the 
electrolyte and the organic solution was estimated to be 0.04 N m-l, from 
observing the meniscus rise in a small length of capillary tube with one end in 
each fluid, assuming zero angle of contact. By adding about 5 em3 Teepol to 
10 litres of electrolyte, the interfacial tension could be reduced to 0.004 N m-l. 
The two fluids were not noticeably miscible a t  room temperatures; but, with the 
addition of Teepol, and after the copper sulphate had been heated ohmically, 
the interface became blurred by contamination of one fluid by the other and by 
products of electrolysis, restricting the useful life of a batch of fluid to two or 
three runs of half an hour each. 

4.2. T h e  scale of the experiment 

To be able to make worthwhile observations of waves without the interference 
of reflexion a t  the walls of the vessel, the length scale of the tank must be an 
order of magnitude greater than the anticipated wavelength, in both horizontal 
directions, to  provide scope for waves of any orientation. The depth of each 
fluid must be a t  least half the anticipated wavelength. But a magnetic field of 
0.2 Wb m-2 must be supplied over the whole area, as uniformly as possible; 
and a total current, proportional to the length times the depth, must be supplied 
a t  a voltage proportional to the length scales; this requires the use of as small a 
scale as possible. At the same time, one must overcome surface-tension effects 
by using as large a scale as possible. Figure 5 is of use in making the necessary 
compromise, showing that to obtain a degree of anisotropy which will show up 
convincingly in an experiment, a frequency of less than 10 rad s-l must be used, 
preferably less than 2;rr rad s-1. From figure 6 it may be seen that 10 rad s-l 
corresponds to wavelengths of 12-40 mm, wavelengths being at lower frequencies. 
Hence, it was decided that the wave tank should be a t  least 500 mm square, 
and of sufficient depth to take a t  least 25 mm depth of each fluid, catering for 
maximum wavelengths of about 50 mm. 
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1.080 x 103 
1.100 x 103 
0.2 
1000 
1.0 x 10-8 

0.9 x 10-6 
1.2 x 10-6 

1.3 x 10-3 

0.004 0.04 

o (rad s-l) 1.5 x 27~  1.0 x 277 

k (rad m-l) 
-, 

I L-. r-A- 7 

43 x 277 58 x 25r 16 x 2n 21 x 2n 

TABLE 1. Relative magnitude of terms in the dispersion equation (25) 
involving viscosity (all in SI units). 

4.3. The vnlidity of the theoretical approximations 

Shercliff (1  969) discussed the conditions necessary for the electromagnetic 
approximations and assumptions to be valid. It is necessary to show that the 
experimental parameters used here satisfy the necessary small-value criteria. 

We take B as 0.2 Wb m-2, being a value that can reasonably be obtained in 
the laboratory, but which is not so high as to make ohmic damping a problem 
with copper sulphate solution (the conductivity of which was measured to be 
around 4 mho m-1). Given (pz-pl) M 20 kg m--3, J z 103 A m-2. The depth of 
the conducting fluid is typically 30 mm; typical values for w and k are 10 rad s-l 
and I00 rad m-1, respectively. Taking the magnetic permeabilityp = 1.2 x 
g = 10 m s - ~ ,  the ratios that must be small are 

small effect of j on B 
small damping by induced j 

pJh lB  = 1-8 x low4, 

gB2/pw = 1.6 x 

small V x E p 1 ~ a w p  = 4.8 x 10-9. 

Clearly the use of an electrolytic rather than a metallic conductor makes the 
electromagnetic assumptions even more realistic. 

It remains to consider the effect of viscosity, by inspecting the relative mag- 
nitude of the terms in ( 2 5 )  with the inviscid estimates of w and Ic inserted. Taking 
two different surface tension and frequency combinations, corresponding to 
the maximum inviscid frequency to produce reasonable anisotropy a t  the given 
surface tension, the approximate values of individual terms expressed as multi- 
ples of powers of B are given in table 1. For each w ,  there are two values of Ic,  
representing the least and greatest wavenumbers occurring in the inviscid ani- 
sotropic situation. If it is assumed that B M w ,  then, for the given parameters, 
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m z (a/v)+, and hence term ( e )  can be evaluated as a multiple of a&. If the assump- 
tion a = w is valid (i.e. viscosity does not significantly alter the predicted inviscid 
wave pattern), then ( b )  and ( d )  must be an order of magnitude greater than 
the other terms. When we substitute a = w ,  this is seen to be so for higher surface 
tension with lower frequency. However, for the shorter wavelength at the lower 
surface tension, (a )  and ( e )  approach + of ( d ) ,  showing that the inviscid approxi- 
mation is being pushed to the limit by these parameters. Therefore any further 
steps to improve the possibilities of producing anisotropy (either by matching 
densities more closely or by further reduction of surface tension) would be futile, 
since viscosity would then tend to dominate the wave motion. 

5. The experimental rig 
To provide the necessary magnetic field, a Helmholtz coil pair was designed 

and built by the UKAEA Culham Laboratory. Based on a mean diameter of 
1 m, the centres 0.5 m apart, the coils produced a field of 0.23 Wb m-2 to 
within 5 yo over a central cubic volume of side 0.5 m, when drawing 1000 A d.c. a t  
60 V from a motor generator set. To reduce cost considerably, water-cooled 
aluminium hollow-section was used as the coil conductor, and proved as satis- 
factory as copper, except for the somewhat increased bulk. The use of Helmholtz 
coils, rather than an iron-cored magnet, left the working section open to view 
from all six sides, making observation of the waves easier. Further details of 
all the equipment are given by Robinson (1973). 

The current supply to the copper sulphate was from the a.c. mains controlled 
by a 30 A auto-transformer and full wave rectified through a diode bridge. No 
attempt was made to smooth the ripple on the resulting d.c., since the 100 Hz 
€requency is not ‘felt’ by the fluid. Rather than using copper sheet, the electrodes 
were constructed of copper gauze, mesh size 28 per inch, because it proved less 
prone to serious contamination by products of electrolysis. This is important, 
because any variation in contact resistance across the electrode face produces 
a non-uniform current density field in the fluid which results in rotational 
j x B forces and hence the generation of fluid motion. 

The fluids were contained in a Perspex tank, 0.6 m square, with a Perspex lid 
floating on the upper liquid to reduce evaporation and consequent density 
variations, as well as to eliminate surface waves. Figure 7 is a diagram of the 
apparatus. Beaches with a 10’ slope were provided a t  the level of the interface, 
to hinder the reflexion of interfacial waves, but this was found to be unnecessary, 
because the waves were considerably damped by viscosity by the time they 
reached the walls. The false floor deepened into trenches to take the electrodes, 
providing a larger surface area of electrode to cope with the current. This was 
possible because the tank was being used only for j perpendicular to B; other- 
wise, such an arrangement would result in rotational j x B forces. To ensure good 
electrode contact, the copper sulphate was fed into the tank first, by a tube 
through the wall into the electrode trough, before the organic liquid was bubbled 
slowly into place above it. 

The wavemaker was a push rod and cam assembly, driving a thin Perspex 
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FIGURE 7. Diagram of apparatus. 

sheet, round for a point wave source and rectangular for a line wave source, 
parallel to the plane of the interface but wholly in the upper fluid. Although 
energy transfer to the waves was reduced thereby, this arrangement was neces- 
sary to prevent any mean distortion of the interface by capillary effects, which 
had been found to distort the current flow pattern sufficiently to produce 
spurious fluid motion through rotational j x B forces. Since such spurions motion 
leads to distortion of the wave patterns, its elimination is vital; but, without 
using a two-fluid system, there is no obvious way of completely eradicating it. 

The waves were observed by illuminating the tank by a bright point source 
of light 0.5 m below it, and casting the pattern resulting from the refraction at 
the interface upon a sheet of tracing paper laid on the lid. The distance between 
the interface and the lid being only about 35 mm, the patterns of dark and 
light on the paper bore a direct relation to troughs and crests of interfacial 
waves. Records of wave patterns were made by photographing the images on 
the tracing paper. Because of their green-blue colour, it was found necessary, 
if good contrast was to be obtained on the negatives, to use a double orange 
filter with a 400 ASA panchromatic film, force developed. Contrast was assisted 
by enclosing the whole apparatus in a blackout tent. 
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6. Observations of wave anisotropy 
To demonstrate the anisotropy of the phase velocity, plane waves were 

generated by a wavemaker consisting of a 40 x 400 mm sheet of 1.5 mm thick 
Perspex, braced for rigidity by a thicker bar of Perspex fixed to the centre of 
the upper side. The wavemaker could be rotated to any orientation, so that the 
angle 8 between wave normals and the magnetic field direction could be varied 
between 0 and go", to enable comparison with the theoretical curves of figures 
3 and 4. 

There are considerable problems in a direct comparison of observed and 
theoretical phase velocities, in that it is difficult to measure the physical para- 
meters accurately. Specific gravity of the upper and lower fluids can be measured 
by hydrometer before the experiment to the nearest 0.001, which is about 5 yo 
of the difference between them; but heating during the experiment and the 
possibility of differential evaporation of the upper fluid mixture introduce 
unknown density variations during an actual run. Similarly, not only is it 
difficult to measure accurately the interfacial tension beforehand, but this also 
can vary considerably during a run, owing to contamination of the interface. 
Nonetheless, it is possible to make reasonable estimates of the physical para- 
meters, by using the pre-run values and calculating surface tension from a 
knowledge of frequency and wavelength in the OHD case. To avoid any doubt 
in the area of whether or not anisotropy exists, the following experimental 
procedure was adopted. 

A run consisted of filling the tank with newly prepared fluids of measured 
densities, setting the wavemaker a t  a fixed frequency, which was checked by 
stop watch a t  intervals during the run, and then, with the wavemaker at  each 
of a series of orientations, taking two photographs of the wave pattern, before 
and after the current was switched on to a set value. The magnetic field was 
kept on all the time. By this procedure, even if the parameters varied significantly 
throughout the run, there should have been negligible variation between the 
consecutive photographs without and with the current on at the same orientation. 
Thus, any variation in wavelength between such photographs is evidence of 
the effect of the j x B force only. Typical pairs of photographs are shown in 
figure 8 (plates I and 2). The waves show up as light and dark bands parallel to 
the wavemaker, which is visible at the bottom of the field of view. Wavelength 
ratios were measured from the photograph pairs, and polar plots were made of 
the ratio against different orientations of the wave normal. Since the wave- 
length without current on should be the same for any orientation, if the physical 
parameters remain constant, plotting the ratio instead of the actual MHD 
wavelength effectively normalizes the results to eliminate the influence of 
varying density and surface tension. The results are compared with the theoreti- 
cal plot, corresponding to the initial values of density and the mean of surface- 
tension values calculated from each OHD photograph. Figure 9 shows the 
results from typical runs a t  three different frequencies, with theoretical curves 
constructed for comparison. Clearly, the observed waves were anisotropic in 
such a way as to give a general agreement with the theoretical curves. Figure 
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FIGURE 9. Polar graphs of wavelength ratio against 8. The B is parallel to the z axis. 
p1 = 1071 kg m-3, pz = 1094 kg m-3, B = 0.192 Wb m--z, J = 850 A m2. 

w (rad s-1) Estimated surfa.ce tension (N m-l) 

(a) 3.74 0.018 

(c) 8.85 0.019 
(b) 3.98 0.006 
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FIGURE 10. Anisotropy ratio against j x B force. p1 = 1071 kg m-3, pz = 1094 kg m-3, 
B = 0.192 Wb m-2. (i) Upward force, w = 3.45 rad s-l, a = 0.019 N m-l. (ii) Downward, 

. w = 3.98 rad s-I, a = 0.018 N m-l. 

9 (a )  represents the closest agreement between theoretical and experimental 
results, while, for the other two cases, the experimental results are closer to the 
theoretical curve than to the isotropic (dotted curve). Considering the difficulty 
of estimating parameter values, as mentioned above, and the error (probably 

5 yo) in measuring wavelength ratios from the photographs, it is considered 
that the results of this experiment support the t'heoretical predictions within 
the rather wide limits of accuracy of the apparatus. At the least, the existence 
of anisotropic surface waves has been verified. 

Further runs were performed for waves having normals in the B direction, 
varying the current density and making comparison with the unaffected wave 
in the j direction a t  the same frequency, surface tension andjB/(Apg) value. In  
figure 10 the ratio of wavelengths is plotted against the parameter jB/(Apg) for 
both upward and downward acting j x B forces, and compared with theoretical 
curves. Once again, a general agreement between experimental and theoretical 
values is observed, the scatter of the points and lack of close agreement being 
attributable to the measurement errors noted above. 

Attempts were made to produce anisotropic lines of constant phase using B 
point wave source. But the reduction in wave amplitude as waves radiated from 
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the source meant that only the shorter wavelength, higher frequency waves 
would show up clearly in the shadow technique, A t  these frequencies anisotropy 
was observed, but only to a very small degree (i.e. wavelength ratio > 0-95). 

7. The dependence of the axis of anisotropy upon the relative orien- 
tations of j and B 

The theory of MHD anisotropic surface waves predicts that the orientation 
of the axis of anisotropy varies as the angle between the imposed current and 
magnetic field is varied. This invites experimental verification. Rather than pro- 
ducing a polar plot of the phase velocity vector for each different angle between 
the imposed j and B, the basic theory can be tested by finding the orientation of 
the minimum phase velocity for a given j and B (i.e. the direction of the minor 
axis of the phase velocity quasi-ellipse). In  practice, with an upward acting j x B 
force of sufficient magnitude, the phase velocity can be reduced to zero. Beyond 
this, increase of j x B causes the interface to become unstable; and the mode of 
instability is clearly the same as the mode of minimum phase velocity when the 
interface is still stable, since the stability equation is identical with the dispersion 
relation. Hence, an experiment to observe the orientation of the instability 
modes may be used to supply information about the orientation of the anis- 
otropy in the fully stable case. 

If the angle between the imposed j and B is p, and that between the wave 
normal and B is 6' (as in figure il), thenj,B, in (11) may be replaced by 

j ,  B, = j B  sin (p - 0) cos 6' = +jB[sin B + sin (p - ZO) ] .  

Now the minimum phase velocity (or alternatively the normal to the mode in 
which instability first occurs as the current is increased) is in a direction which 
makes j,B, a minimum, i.e. for a given value of ,13 

sin(p-28) = - 1 ,  i.e. 0 = &3+Q;rr ) .  (30) 



494 I. S.  Robinson 

40 - 
30 - 

-90 -80 -70 -60 -50 -40 -30 -20 -10 
I 1  1 1 1 1  I l l ,  I l l l l l l l L  < 10 20 30 40 50 60 70 80 90 

(P+90)" 
- -10 

- -20 

- -30 

- -40 

FIGURE 13. Results of orientation experiment. 

Experimenta,l verification. A tank was constructed to fit inside the magnet 
described above, the four corners resting on a circular brass track, enabling it 
to be rotated through 360" about a vertical axis through its centre. The sides of 
the tank were vertical, and the floor flat, so that there should be no rotational 
j x B forces produced by the geometry of the current flow when p is not 0" 
or & 90". As in the wave experiments, copper gauze electrodes were used, covering 
the whole wall on opposite sides of the tank. A system for photographic and 
direct visual observation of interfacial waves (and small-amplitude instabilities) 
was set up, as above. The tank rotated to set p at a given value; the magnetic 
field switched on; the imposed current was gradually increased until the surface 
began to become unstable. As predicted by theory, it did so in a wave form having 
parallel troughs and crests in one direction. When these had reached an amplitude 
of a few millimetres, sufficient to cast good shadows on the tracing paper of the 
lid, a photograph was taken (see figure 12, plate 3). As expected, as the tank 
was rotated progressively from a j normal to B position with j x B upward 
toward a j and B parallel or anti-parallel position, the current required to produce 
instability increased. The limits on available current prevented further rotation 
of the tank beyond the parallel position; but, even in this position, the required 
current was so high that spurious motions occurred, presumably due to rotational 
j x B forces, caused by very slight irregularities in the current distribution at 
the electrodes, magnified by the increased current. 

From the photographs, 6 was measured and plotted against p in figure 13. 
On one or two of the photographs, there was some ambiguity between two 
possible wave normals (as in figure I2 (b ) ) ,  and such results are shown as bars in 
figure 13. The theoretical line of (30) is drawn; and it can be seen that there is 
excellent agreement with experiment. 
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8. Conclusions 
The existence of anisotropic surface waves due to a vertical electromagnetic 

body force was verified, and the analytical theory was substantiated within the 
rather wide limits of experimental accuracy. As it stands, the experiment does 
not provide an immediately convincing demonstration of anisotropic waves, 
since comparison must be made between consecutive runs. However, with 
further attention to the details of the experiment (e.g. increasing the amplitude 
of the wavemaker stroke and optimizing the size of the wavemaker), it should 
be possible to obtain more convincing anisotropic wave patterns from the 
point source experiment, which could then form the basis of a pedagogic tech- 
nique for demonstrating anisotropic waves. 
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Professor J. A. Shercliff for the initial suggestion of the work and for helpful 
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FIGURES 8 (a -c ) .  For legend see plate 2 .  
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Plate 1 

(Facing p .  496) 
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FIGURE 8. Typical photographs of plane waves. 
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FIGURE 12. Typical photographs of instabilities in orientation experiments. 

( a )  p =  -30'. ( b )  p = -100". 
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